
Exploring Role-Based Adaptation

Sebastian Götz and Ilie Şavga

Department of Computer Science, Dresden University of Technology, Germany,
{sebastian.goetz|is13}@mail.inf.tu-dresden.de

Abstract. The adapter design pattern [1], commonly used for integration and
evolution in component-based systems, is originally described byroles. In class-
based systems, the conventional realization of the pattern maps these roles to
classes. The recent appearance of mature languages supporting roles as first order
programming constructs poses the question whether realizing this pattern directly
in roles offers benefits comparing to class-based realization. This paper explores
the feasibility of role-based adaptation and discusses its benefits and challenges.

1 Introduction

When assembling independently developed components, it is often the case that their
public interfaces do not fit to each other. If components cannot be adjusted directly
(e.g., when assembling third-party components), an adapter needs to be placed between
them to bridge interface incompatibilities. Gamma et al. [1, p. 139] describes the adapter
design pattern by 4 collaborating roles (Client, Target, Adapter andAdaptee) and shows
a possible pattern implementation as a mapping of these roles to classes.

For our running example, assume a university management system (UMS), in which
the concept of student is modeled by interfaceStudent and implemented by class
StudentImpl. Among other interface methods, the class implements thegetGrades
method that retrieves subjects and grades of the student from a file used for serializa-
tion. This method is used also in the implementation ofprintGrades that prints out
subjects and grades of a student.

Later, due to new system requirements, it is decided to buy a sophisticated reporting
component that replaces the simple functionality previously realized directly byStu-
dentImpl. Moreover, UMS is integrated with a persistence component that is now
responsible for saving and retrieving data. To retrieve student grades,StudentImpl
must now call the persistence component to get data. To printthis information,Stu-
dentImplmust wrap it before sending to the reporting component, because the signa-
ture of printing method inStudent (expected by existing clients) differs from the one
of the reporting component (Report.printReport expecting report component’s
specificDataRow as its parameter). So,StudentImpl must translate between the
two interfaces and becomes effectively a class-based adapter (Figure 1).

Figure 2 shows internals of theprintGrade method ofStudentImpl that per-
forms the actual translation. Using student identity (for simplicity, ”this”), the method
constructs the corresponding SQL query, retrieves data from the persistence component
using thegetGrades method and fills them into the type required by the reporting
component. In addition, now thegetGrades method (code not shown) itself is an

Fig. 1. Class-based adapter. Classes are annotated with roles these classes implement.

adaptation method callingretrieve of the newly introduced persistence component
and converting itsResultSet to theMap of theStudent interface being adapted.

The main drawback of this class-based adapter realization is that the code respon-
sible for different tasks is highly intertwined. For instance, in lines 11 and 12 the code
realizing logic for the data retrieval and for reporting concerns is joined. When real-
izing this adapter, developers need to consider in fact the static types and semantics
of all three domains involved (i.e., of the report and persistence components and of
the UMS itself). In real life scenarios with possibly many interrelated components be-
ing integrated, such inability to separately realize each concern increases the time and

1 Repor t r e p o r t ;
2 DBComponent db ;
3 p u b l i c vo id p r i n t G r a d e s () {
4 / / c o n s t r u c t an SQL query f o r t h i s s t u d e n t
5 S t r i n g query = createSQLQueryByTime (t h i s) ;
6 / / r e t r e i v e s t u d e n t s u b j e c t −mark p a i r s
7 R e s u l t S e t s r s =t h i s . ge tGrades (query) ;
8 / / f i l l i n and send t h e r e p o r t da ta
9 DataRow r e p o r t D a t a =new DataRow () ;

10 whi le (s r s . nex t ()) {
11 r e p o r t D a t a . add (s r s . g e t S t r i n g (’ ’ s u b j e c t ’ ’)) ;
12 r e p o r t D a t a . add (s r s . g e t S t r i n g (’ ’ mark ’ ’)) ;
13 }
14 r e p o r t . p r i n t R e p o r t (r e p o r t D a t a) ;
15 }

Fig. 2. Implementation ofStudentImpl.printGrades

error-proness of adaptation. Even more important, an adapter is itself a software artifact
inevitably requiring maintenance. In case the adapter needs to be modified (for example,
to improve its performance), developers need to understandits often extremely complex
implementation.

The situation aggravates furthermore when the public interfaces of components, on
which the adapter depends, evolve as well. In our running example, an upgraded ver-
sion of the report component may change the signature ofReport.printReport.
For example, in an older component version, its void method was throwing an excep-
tion in case of a printing failure and in the new version the method returns a new type
DocumentPrinting containing details of method’s execution. To accommodate the
adapter to these changes, its whole code needs to be thoroughly investigated and un-
derstood. Often this needs to be done by developers others then the adapter’s initial
developers. Because the adaptation decisions are made dependent on each other in the
code, a bug made when adjusting one component may propage to other adapter’s parts.
For instance, ifgetGrades of the persistence component evolves and a bug is made
when adjusting to its changes, this bug will also be reflectedin the behavior of the
adapter’sprintGrades.

All in all, these maintenance problems stem from the fact that the adaptation concern
mentally modeled by four roles of [1] is lost in transition tothe class-based adapter im-
plementation. Presumably, preserving these roles explicit in the implementation brings
benefits comparing to class-based adaptation. Using a language supporting roles as first-
class citizens, we investigate the feasibility, benefits and drawbacks of role-based adap-
tation.

2 Role-based Adaptation

To implement the role-based adapter of our running example,we use a relatively new
yet rich language ObjectTeams/Java—a stable well-tested Java extension supporting
roles and collaborations [2]. However, since the language consists of several specific
terms that need lengthy explanation, in this paper we refrain from its specific termi-
nology. Instead, taking into consideration the run-time responsibilities, we dissect the
concept of the Adapter role intoIn- andOut-(sub)roles. Similarly to conventional as-
pects, an In-role is responsible for handling the incoming data into the adapter and an
Out-role is in charge of passing data flow further to the adaptee.

Figure 3 depicts how role-based adaptation can be realized for our running example.
Each role is played by (instances of) and mapped to a single class. The key difference to
the class-based adapter is that Adapter is realized directly as a role. As a consequence,
it is now possible to define a separate adapter role for each commercial component to
be integrated. Additionally there is another separate rolefor each target class. Note,
that In- and Out-roles for each adaptation role in concern are realized separately and
are encapsulated in the corresponding role realizations, preserving thus adaptation de-
cisions. Regardless of how they are actually mapped to classes and boil down to the
execution code, these explicit roles can be maintained separately and do not intertwine.
Moreover, adding new adapter’s responsibilities (e.g., toadapt yet another commercial
component) becomes easier due to the separation of adaptation concerns. In a class-

Fig. 3. Role-based adapter. Roles annotate classes playing those roles.

based realization, such separation is only possible using the complex role object pattern
[3], which is in fact a workaround of language limitations torealize roles directly.

3 Challenges and Limitations

An important conceptual issue to be mentioned is that applying role-based adaptation
to adapt class-based components reduces potential power ofa pure object-based design
(as envisioned by Reenskaug [4]). In our case it is not possible to realize the pattern
only in roles, because at least some of them need to be bound toactual components’
classes. In particular, in a strongly-typed class-based system, at least the target class
needs to be specified statically.

A limitation inherent to ObjectTeams/Java is that a role canonly have a single base
class. As a consequence, the Adapter role cannot be realizedby instances of different
classes at run-time. This decreases reuse, because adapterroles, once defined, can only
be used for a single class. If another class needs the same functionality, another role
needs to be defined again, possibly duplicating the same implementation.

The major practical challenge we stipulate regarding role-based adaptation is that
the learning curve implied the application of a new technique may not be accepted
by developers. Since developers are in general reluctant tolearn new programming
languages and, even more important, have to admit a certain degree of obsoleteness of
their conventional class-based adapter realization, it isnot clear, whether such technique
can be easily accepted by them.

4 Related Work

Technically most closely related work to our approach is of Bergmans and Aksit [5]
on composition filters—a technique enhancing ordinary objects with input and output

filters for incoming and outgoing messages correspondingly. Each filter may reject or
accept a message using certain acceptance conditions. If a message is accepted, it can
optionally be altered and forwarded to a target. The target itself can be chosen using
certain selection logic. However, there is no discussion whether their approach is appli-
cable for adaptation in case of component integration.

5 Conclusion

Using conventional class-based realization of adapters leads often to highly complex
adaptation code that is hard to understand, maintain and evolve. A role-based realization
of adapters in a language supporting roles explicitly may considerably reduce code
complexity due to the separation of adaptation concerns in the resulting implementation.
Even more important, such realization preserves initial adaptation decisions made and
contribute furthermore to the maintainability of adapters.

We will further investigate the frontiers of role-base adaptation, its practical real-
ization, advantages and limitations in one of the authors’ Bachelor thesis (currently in
progress) [6].

References

1. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns:Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading, Massachusetts (1995)

2. Herrmann, S., Hundt, C., Mosconi, M.: ObjectTeams/Java Language Definition - version 1.0.
Technical Report 2007/03, Technical University Berlin (2007)

3. Bäumer, D., Riehle, D., Siberski, W., Wulf, M.: The role object pattern. In: PLoP’97: Pro-
ceedings of the 4th Pattern Language of Programming Conference. (1997)

4. Reenskaug, T.: Working with Objects: The OOram Software Engineering Method. Manning
Publications (1996)

5. Bergmans, L., Aksit, M.: Principles and design rationale of composition filters. In R. Filman,
T. Elrad, S.C.M.A., ed.: Aspect-Oriented Software Development. Addison-Wesley (2004)
ISBN 0-32-121976-.

6. Götz, S.: Role-based adaptation (2008) http://www1.inf.tu-dresden.de/
s̃9288421/papers/goetz-gb-thesis.pdf.

